NanoString Technologies Presents Proof-of-Concept Data for Multiplexed Digital IHC in Tumor Tissues at AACR Meeting

NEW ORLEANS, April 18, 2016 (GLOBE NEWSWIRE) -- NanoString Technologies, Inc. (NASDAQ:NSTG), a provider of life science tools for translational research and molecular diagnostic products, today presented the first proof-of-concept data from its novel multiplexed digital immunohistochemistry (IHC) technology at the American Association for Cancer Research (AACR) annual meeting in New Orleans, Louisiana. Using a prototype device together with an nCounter® Analysis System, the company and its collaborators demonstrated simultaneous counting of 30 different protein targets across a fixed, slide-mounted slice of tumor tissue. The technology demonstrated a dynamic range exceeding five logs and neared single-cell spatial resolution.

The new approach is described on AACR poster #1372, “Spatially resolved, multiplexed digital characterization of protein distribution and abundance in FFPE tissue sections.” Gordon B. Mills, M.D., Ph.D., Professor and Chair of the Department of Systems Biology at MD Anderson Cancer Center, is co-author of the poster. Dr. Mills commented, “The expansion of NanoString technology to the spatial context of protein concentration is an exciting advance that holds much promise for biomarker discovery and implementation into patient management. We are excited by the actionable data generated by the prototype and look forward to future developments and exploring the utility of the platform in improving patient outcomes.”

Based on NanoString’s proprietary barcoding technology, the multiplexed digital IHC approach measures local protein levels within heterogeneous tissue samples. The prototype includes imaging and fluidic components to capture spatial context, and existing nCounter instruments provide the quantification. Current multi-target IHC techniques involve sequential processing steps; therefore, each target addition increases the overall handling time and workload. In contrast, NanoString’s novel technology samples all analytes simultaneously to shorten experiments and simplify data analysis while preserving a higher multiplexing capacity and a wider detection range. The technology is expected to be compatible with current and upcoming nCounter Vantage™ products for 3D Biology™ analysis.

“NanoString’s new digital IHC technology combines the high multiplexing and digital quantification of single-molecule optical barcodes with the biological insights provided by protein localization,” stated Joseph Beechem, Ph.D., Senior Vice President of R&D at NanoString. “Over the remainder of this year, our plan includes increasing the number of targets in our assays, enhancing the imaging resolution and exploring use with other 3D Biology applications.”

Dr. Beechem will present the initial results at the AACR meeting in Spotlight Theater B, Hall J on Tuesday, April 19th from 12:30 – 1:30 pm Central Time. His presentation is titled “New Optical Barcode Chemistries for Digital, Multiplexed Immunohistochemistry: Power of 3D Biology™ Enhanced by Spatially Resolved Multiplexed Protein Quantitation on FFPE.”

About NanoString Technologies, Inc.
NanoString Technologies provides life science tools for translational research and molecular diagnostic products. The company's nCounter Analysis System has been employed in life sciences research since it was first introduced in 2008 and has been cited in more than 1,000 peer-reviewed publications. The nCounter Analysis System offers a cost-effective way to easily profile the expression of hundreds of genes, proteins, miRNAs, or copy number variations, simultaneously with high sensitivity and precision, facilitating a wide variety of basic research and translational medicine applications, including biomarker discovery and validation. The company's technology is also being used in diagnostics. The Prosigna® Breast Cancer Prognostic Gene Signature Assay together with the nCounter Dx Analysis System is FDA 510(k) cleared for use as a prognostic indicator for distant recurrence of breast cancer. In addition, the company is collaborating with multiple biopharmaceutical companies in the development of companion diagnostic tests for various cancer therapies, helping to realize the promise of precision oncology.

For more information, please visit

Forward-Looking Statements - NanoString
This press release contains forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934 and the Private Securities Litigation Reform Act of 1995. These forward-looking statements include statements regarding plans to develop the digital IHC technology based on the existing prototype, the expected compatibility with the existing nCounter Analysis System and related assays, and plans to increase the number of targets in the digital IHC assays and improve the imaging resolution. Forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially and reported results should not be considered as an indication of future performance. These risks and uncertainties include, but are not limited to: risks associated with keeping pace with rapidly changing technology and customer requirements; risks regarding the company's ability to successfully develop and commercialize new products; risks that new market opportunities may not develop as quickly as expected; risks associated with competition in marketing and selling products; risks of increased regulatory requirements; as well as the other risks set forth in the company's filings with the Securities and Exchange Commission. These forward-looking statements speak only as of the date hereof. NanoString Technologies disclaims any obligation to update these forward-looking statements.

The NanoString Technologies logo, NanoString, NanoString Technologies, nCounter, 3D Biology, nCounter Vantage and Prosigna are registered trademarks of NanoString Technologies, Inc.

Contact: Mark Klausner of Westwicke Partners Phone: 443-213-1501

Source:Nanostring Technologies