A doctor "showed me what he uses when he went on rounds, a piece of paper that had one number every hour for the heart rate, a number every hour for the respiration and one number every hour for blood oxygen," McGregor recounts. "And I said 'but what about those numbers that are flashing now?' And I thought, with my background, with all these things we were doing to watch shopping behavior, why can't we do the same thing with these monitors. Surely there was a message we were missing."
McGregor and her team turned to the monitors that were keeping track of some of Canada's smallest patients: premature infants held in the neonatal intensive care unit at The Hospital for Sick Children in Toronto. Those babies are at high risk for infection, according to Dr. Andrew James, associate clinical director of the hospital's neonatal intensive care unit.
"Infection is a constant worry," Dr. James explains. "About 20 percent of low-birth-weight babies develop an infection, and of those babies about 18 percent actually pass away. So it's very serious—and very common." Using previous research as a guide, McGregor and James sought out to see if there were trends in premature infants' vital signs that could be an accurate predictor of infection.
(Read more: Why your company health care benefits may change)
Enter the Artemis Project. Named after the Greek goddess who protected babies and childbearing women, the project sought to synthesize the millions of data samples coming from the neonatal monitors to see if there were any notable patterns.
"We looked at the heart rate for trends; when babies become infected, the baseline heart rate tends to increase," Dr. James says. "What I've learned is that when you look at more data and you look at it in a more granular sense, not only is there more to be seen, but you actually see more. We're beginning to see abrupt changes in heart rate variability and that really makes us think of infection."
These changes in heart rate are usually a telltale sign of infection. "With inflammatory response, there are chemical signals to the brain that affect heart rate," Dr. James explains. "And—when there's an infection, heart rate variability decreases."